Domaine d'étude

 

L'objectif de ce cours est de présenter (hélas succinctement) la mécanique des milieux continus. Nous allons trouver dans ce cours l'application du principe fondamental de la mécanique à tous types de domaines matériels. En particulier nous pourrons nous intéresser aussi bien à des domaines ayant des comportements de corps solide ou des comportements de fluide (liquide ou gaz). La généralité de ce cours apparaît ainsi évidente.

Diagramme TS Il est à noter que la distinction entre ces différents états de la matière n'est pas évidente. Ainsi comment ne pas s'interroger devant le phénomène de changement d'état liquide-vapeur-liquide pour un cycle englobant dans le diagramme Température - Entropie le point K sommet de la courbe d'ébullition.

 

Le dictionnaire ne nous aide pas particulièrement dans notre démarche de distinction. Ainsi Le Petit Larousse donne les définitions suivantes :

*Fluide     Se dit des corps (gaz et liquides) qui n'ayant pas de forme propre, sont déformables sans effort.

*Gaz         Tout fluide aériforme (qui a les propriétés physiques de l'air (fluide gazeux qui forme l'atmosphère)). Un des trois états de la matière, caractérisé par la compressibilité et l'expansibilité.

*Liquide     Qui coule ou qui tend à couler. Se dit d'un état de la matière présenté par les corps n'ayant pas de forme propre, mais dont le volume est invariable.

*Solide     Qui a une forme propre.

 

Comment avec ces définitions trouver la frontière entre un solide plus ou moins mou et un liquide plus ou moins visqueux? Le sable est-il un solide ou un fluide? Certaines peintures ont un comportement de solide mais après brassage deviennent fluides. Le verre est un solide à notre échelle de temps, mais avec les siècles, on constate que c'est un liquide à très forte viscosité. Le yaourt peut être considéré comme un fluide à mémoire. Et encore nous ne dirons rien des Alliages à Mémoire de Forme (AMF).

 

Comme on peut le constater, la détermination n'est pas simple et peut être fonction de nombreux paramètres (Pression, Température, Temps ...). En conséquence, on peut considérer que la démarche du mécanicien qui consiste à regrouper dans un seul enseignement l'étude mécanique de ces différents états de la matière est légitime, mais quelle risque de se heurter à de nombreuses difficultés. L'étude de ces différents comportements est appelée la Rhéologie.

 

Pour mener à bien une étude de mécanique, la notion de référentiel est essentielle. D'une part, afin de connaître les évolutions cinématiques d'un domaine matériel on devra lui associer un référentiel, et d'autre part le Principe Fondamental de la Mécanique s'appuie sur l'existence d'un repère privilégié appelé "Repère Galiléen".

Un repère est défini par la donnée d'une base vectorielle associée à une origine. Il est à noter qu'en aucun cas il n'est fait l'obligation d'une base orthonormée. Bien évidement, pour des questions de simplifications, nous essaierons toujours d'employer de telle base, mais nous pourrons aussi constater que suite aux déformations imposées à notre domaine, nous ne pourrons pas constamment conserver cette notion d'orthogonalité. Le mécanicien est ainsi tout naturellement guidé vers l'utilisation des notations tensorielles. A ce sujet, il est à noter que l'algèbre et l'analyse tensorielle professées en mathématique sont des enseignements directement issus de notions mécaniciennes. Le mot tenseur ne provient-il pas du mot tension ? Ainsi on peut constater ce que la science mécanicienne a apporté à la connaissance des autres sciences. Cette remarque peut aussi bien s'adapter aux méthodes de résolutions numériques fortement issues de la méthode des éléments finis.